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I. Introduction

In this paper, the theory of objective analysis errors is developed

in a simplified form in order to demonstrate that

(1) It is generally advantageous to weight the forecast value in

some way with observational data in the objective analysis.

(2) Observational data derived from satellite radiance measurements

possess certain inherent disadvantages when used in the conven-

tional way in an objective analysis scheme.

Optimum interpolation objective analysis methods have been discussed

by Gandin (1963), Bengtsson and Gustavsson (1971, 1972), and Rutherford

(1972). Gandin analyzes departures of observational values from clima-

tological norms with no reference made to forecast values, All observations

are assumed to be of the same type and to possess random errors. Bengtsson

and Gustavsson, and also Rutherford, analyze deviations of observational

values from forecast values, also with the assumption of uniform observa-

tional type and random errors.

The above authors do not consider analysis problems associated with

heterogeneous data sources. The advent of quantitative satellite data

has-made it necessary to consider the special problems associated with such

data. The likelihood that satellite observational errors are spatially

correlated along an orbital pass, and the fact that operational VTPR

observations as currently determined are highly correlated with forecast

values, both tend to reduce the informational value of the satellite

observations.
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Alaka and Elvander (1972) have considered the problem of optimum

interpolation using observations of mixed quality; however, the error

correlations peculiar to satellite data are not considered in their

treatment. The present study focuses upon these error correlations

and the role which they play in determining the error of an optimized

objective analysis. A simplified analysis "model" is introduced in

order to obtain quantitative results without requiring a detailed

knowledge of the structure of data fields. Although this simplification

necessarily restricts the application of the results, it is nevertheless

hoped that, at least in an approximate sense, the results correctly

indicate the nature of the impact of satellite observations upon objective

analysis error.

II. The Analysis Model

In objective analysis methods, errors arise for two different reasons.

First, the interpolation method used, be it polynomial approximation,

distance dependent weighting functions (as in the Cressman (1959) successive

corrections scheme), or optimum interpolation in the manner of Gandin,

leads to error since no interpolation method can exactly obtain the "true"

value at an analysis grid point. The magnitude of this error depends, in

general, upon the density and distribution of observations in the vicinity

of the grid point as well as on the scale of disturbances analyzed. This

error will generally differ from one grid point to another.

The second source of analysis error is the error of the observations

themselves (and also of the forecast value if used in the analysis). This

error of course differs from one observation to another, and the effect
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of observational errors on the resulting analysis error will also differ

from grid point to grid point. However, individual observational errors

are rarely known, therefore we must use statistical values of these errors.

In this case, the error in the analysis at a particular grid point which

is due to observational error may be determined, in a statistical sense,

from the number and kind of observations used to obtain the analyzed value

at the grid point. It is with this contribution to the total analysis

error that the present study is concerned.

Assume that a currently valid forecast value Zf of a meteorological

variable z is available at a given analysis grid point. Additionally,

assume that there are m rawinsonde observations and n satellite observa-

tions in the vicinity of the grid point which are used to obtain, by

interpolation, the analyzed value z0 at the grid point. A linear inter-

polation formula which evaluates the analyzed value in terms of the

forecast value plus the (m + n) observations will be of the general form

2+ =cy Cl)

j=,

where the ai, bj, and c are coefficients for assigning relative weights

to the observations and the forecast. We will require that the weighting

coefficients be non-negative and that

014~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
C2)
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It may then be shown that the error variance of the analyzed value due

to the errors of the observations and forecast is given in general by

&9 M 4 
i7 - a. 

k = ° rk j ., b C X

e I

a,=t ; > of. a fi + 2c > 2 S or i i i(3)

where the t's are the standard deviations of the errors, and the pts are

correlation coefficients between the errors of pairs of observations, or

between errors in the observations and the grid point forecast, as

indicated.

It may be assumed that the rawinsonde observational errors are un-

correlated with each other, with the satellite errors, or with the forecast

error. Then (3) reduces to

71~ ~ ~ ~ ~ ~~40-> =, Af a 4+ at @2 -6r fc

IL: J

+4- rc 2 r Hi; Pt j 0 0 C4)

The retained correlation coefficients assume that the satellite observa-

tional errors are positively correlated with each other and may be

individually correlated with the forecast error at the grid point,

p
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Introducing the definitions

Gs --= ) (5)

-g ~~~_ ?- !s b

,CS < 6;(6)

in equation (6) gives

rr &7 >2C6rd f ~ 

(7)

where Pss and Pfs may be interpreted as equivalent weighted correlation

coefficients. The autocorrelation pss is the weighted mean spatial

correlation of satellite errors for those satellite observations used

to determine the analyzed value at the grid point,
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The correlation coefficient Pf refers to the weighted mean correlation

between each of the satellite observational errors and the forecast error

at the grid point being analyzed. Note that this is not the same as the

correlation between satellite error and forecast error at the satellite

observational location. If PFs represents this latter correlation, then

the two are related by

(8)EsFf

where PFf is the weighted mean correlation of the forecast error at the

satellite observational location with that at the grid point location.

The magnitude of PFf would likely be determined by the ratio of the area

scanned for the grid point analysis to that of synoptic-scale disturbances.

If the satellite observations are all relatively close to the grid point

being analyzed, the value of PFf would be expected to be nearly unity.

It is clear that Pfs vanishes when PFs is zero for all the satellite

observations, no matter what value pFf has,

Finally, we define

C9)

6 /_ · d< 0 (lo)
j=t

(10)
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and re-express (1), (2), and (7) in terms of a and b. The resulting

expressions are

~ ~ 4- Cn

c - '---

£'--- ('.0 

OIOt -L r~ea, I :4 b -ar(

rL (C 2 nc r'

In general, the values of var (ai), var (bj), and coy (bi,

vary from grid point to grid point as the values of the a and b

themselves vary. It is interesting to note that a2 as given by
0

minumum (other quantities fixed) when

va r (a ) = co v Ch - h

b,) will

coefficients

(13) is a

(14)

7.

(11)

(12)

(13)

0
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This corresponds to equal weighting of all rawinsonde observations and also

of all satellite observations such that

L4^~ ~ = ~~~ ok , z = 6 ~~~~(15)

for all i and j.

Although such a choice of weighting coefficients minimizes the contri-

bution of the observational and forecast errors to the total analysis error,

it does not necessarily result in the minimum value of the total analysis

error, The contribution to the analysis error by the error in the inter-

polation will depend upon the choice of the individual coefficients a. and

b. for the weighting of observations in the vicinity of a grid point. This

latter contribution will not, in general, be a minimum when (15) is fulfilled.

Using optimum interpolation based on climatological statistics, Gandin

(1963) has obtained general expressions for the minimized total analysis

error and for the corresponding optimized values of the weighting coefficients.

His results are applicable only for observations of uniform quality which

possess completely random, uncorrelated errors. Quantitative values for

the analysis error and for the corresponding weighting coefficients can

be obtained only for a specified distribution of observations in the vicinity

of a grid point. In an actual analysis situation, this distribution, along

with the optimized weighting coefficients and the resulting analysis error,

will of course change from one grid point to another.
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In this study, we effectively eliminate the interpolative contribution

to the analysis error by assuming that the meteorological field being

analyzed is a uniform one. In this case, interpolation by (11) will be

exact, except for the effect of observational and forecast errors, no

matter how the weighting coefficients ai, bj, and c are chosen. We will

choose the a. and b. coefficients according to (15) so that the variances
z- J

and covariances of the coefficients in (13) will vanish. (An alternative

analysis model producing the same mathematical result is co.location of all

observations with the grid point. In this case, the autocorrelation pss

would not be interpreted as a spatial correlation of satellite errors.)

Substituting (15) in (13) gives

0 g 5 Ha (T; 0; d g1 a'-i) 55 4C fJ 2Abc;-s (16)

We now choose the coefficients a, b, and c, subject to the constraint of

equation (12), such that a2 assumes its minimum value. Using the method
0

of Lagrange multipliers,

J To _-) z ; = ° (17)

where ~ E ma + nb + c - 1 = 0.

Application of (17) to (16) yields the set of equations:

2 gnaw~ Or -1- ark ~~~ o Cle(18a)
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zmk~ l7 r 4 .2 ncf C r + " 1b
;$ c = 0 6- (18b)

a 0f f> S5 (18c
S

where, for notational convenience,

k - ffi + (n-z) f: ~~~~~~~~~~(19)
The parameter k is thus a measure of the degree of mutual correlation of

the satellite observational errors.

Solution of the system of equations (18a, b, c) and (12) leads to the

following expressions for the coefficients:

:~~~~~2 :
Ck = % (k- rxs3 < (20a)

5 ;F S s ) (20b)

e. 5 c (k - gsj ~ ) (20c)
where

--- 2D a 06 tk.. f: (21)
: :



* X
11.

Finally, substitution of (20a, b, c) in (16) yields, for the minimized

value of a2 ,
o0

Aft~~~~ grtas~ ~(~~~oc d ):X3~~ ~ (22)

It should be noted that the denominator D is positive-definite.

For graphical and computational purposes, it is convenient to re-

express (20a, b, c) and (22) in a normalized form in terms of the error

ratios

(23)

With these definitions, equations (20a, b, c) and (22) may be expressed

as

<{s C~) (~t~ oJ / °< /(24a)

-_? ) /-i(24b)

C=. (/Ap -? - }) /,.(24c)
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(25)

(o.- ) f A(k l 7 ) An

where

L~ i?*k/ ~. 2A~Y~r[3 4- C '-- 4 ( 

The solutions given by (20a, b, c) and (22), or alternatively by

(24a, b, c) and (25), do not apply for all possible values of 8 and

positive PfsI Equation (24b) gives a negative value of b when 8 >
Ofs

whereas equation (24c) gives a negative value of c when a < n Pfs
k Os

As only non-negative weights are permitted (a negative weight assigned

b ~to real data would be a questionable practice), we conclude that, when

Pfs > 0, equations (24a, b, c) and (25) are valid only when

However,

and (25)

kSj

n Pf < only if p2 < k. Thus, equations (24a, b, c)
k Pfs fs - n

are valid only provided this additional criterion is met:

KE 

(26)

(27)

These restrictions do not apply when p is negative; however, we are
fs

only concerned with the implications of positive correlation in this

study.
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The question arises as to how the results should be modified when

and/or Pfs are outside of the ranges specified by (26) and (27). The

answer is that either the forecast value Zf or the satellite observations

must be discarded in order to obtain minimum analysis error. For condition

(27) satisfied but R < n Pfs, we set c=0 in equations (12) and (16) and

kminimize
-minimize

I?- - '2- SZ- Z 2-

9' -= n va, t 6- X n kL b , .4 : .

with respect to the coefficients a and b, subject to

The resulting expressions are

oj:7 = k , k a-

Novai ^k 0- 
2-

=~~~~~~~~~~

-t

Al -,, P". C/ /a

J1 r 4 v * I c. 

0 _ kfr X

(28)

the condition that

(29)

(30a)

(30b)

(31)
7-

X Aqk(<X
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For condition (27) satisfied but $ > - , we set b=O in equations

(12) and (16) and proceed as above. The resulting expressions in this

case are

_ --__ / (32a)
f

2- V

The same results obtain when n=O in equations (24a), (24c), and (25).

Equation (33) also corresponds to the expression given by Gandin (1963, p.85)

for the minimum possible interpolation error for homogeneous observations

with random errors, except that (33) is normalized with respect to 02
f

rather than climatological variance. Note that O0 or / ~ when the

number m of observations becomes large.

When condition (27) is not satisfied, i.e., Pfs > ik/n , equation (25)

does not give a real value for to, hence a three-coefficient solution is not

possible for any value of S. Also, a solution with a0 is not possible.
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Hence the choice is between (20) - (31) with c=0 and (32) - (33) with b=0.

By comparing the right-hand sides of equations (31) and (33), it is easy

to show that (31) gives the minimum 02 when 6 < un/k and that (33) gives
0

the minimum a2 when B > f n/k . The two solutions correspond when B = / n/k
0

The various possibilities are shown diagrammatically in Figure 1.

Here Pfs is plotted as the abscissa and B as the ordinate. The domain is

divided into three regions by the curves B = npfs/k, B = 1/Pfs, and (for

Ifs > / k/n ) = /n/k. Equations (24a, b, c) and (25) give minimum

analysis error in region I, equations (30a, b) and (31) in region II, and

equations (32a, b) and (33) in region III. For the special case of n=0

(no satellite observations), equations (32a, b) and (33) apply everywhere.

The figure indicates that, when the correlation Pfs between observa-

tional and forecast errors is small, the lowest analysis error is usually

obtained by a three-way blend of forecast with rawinsonde and satellite

observations. On the other hand, this is no longer true when Pfs is

relatively large. Then, either the forecast value or the correlated

observation must be discarded as being essentially redundant information

with an error level which only results in degrading the analysis if used.

The implication of this result for satellite VTPR data, believed to be

highly correlated with forecast values, in analysis procedures is obvious.

When Pfs = 0, equation (25) reduces to

(, A n K (32)
n 4./ +tk(/X 
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By comparing the right-hand side of this expression with the right-hand

sides of (25), (31), and (33), it is easy to show that, for given or'

as' and af, the uncorrelated case (Pfs = 0) gives the lowest possible

error.

The effect of the mutual or spatial correlation pSs of satellite

observational errors on the results enters through the parameter k.

Recalling that

k a 9("/s 

we can see that k is unity if there is no spatial correlation (or only

one satellite observation) but otherwise increases both as the number of

satellite observations and their degree of spatial error correlation

increases. When n is much larger than unity, the ratio

It is apparent from (25) and (31) that, other factors being equal,

increased spatial correlation of observational errors results in larger

analysis error. It must be remembered that point values of the satellite

observations are assumed in reaching this result. If differences between

adjacent observational values are used instead in performing the analysis,

the spatial error-correlation may be used to advantage. For if

All! = (@ 5^ ( i5- 7 (35)
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where (z ) and (z ) are two adjacent satellite observations, then it

may be shown (by application of equation (3) for two satellite observations

only) that the error in Az is given by

0r 7 =I (36)

This result indicates that it may be advantageous to use differences

rather than absolute values in analysis work provided the error correlation

between pairs of observations is greater than 0.5. Thus gradient quantities,

such as geostrophic or thermal winds, may be analyzed in preference to

height or temperature fields.

III. Discussion of Results

Figures 2 through 8 show the dependence of the normalized analysis

error aO/af on the normalized satellite observational error R and on the

mean correlation coefficient Pfs between the satellite observational errors

and the forecast error at the grid point. These figures are divided by

the solid lines into three regions as indicated schematically in Figure 1.

In region I, the forecast is optimally weighted with both types of observa-

tions, in region II the forecast is discarded, and in region III the satellite

observations are discarded. For the rawinsonde observations, a value of

0.5 has been assumed throughout for the normalized error a. In other words,

the rawinsonde observations are assumed to have error levels which are

half those of the forecast errors. Figures 2 through 4 show minimized
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analysis errors when m=0, i.e., there is no rawinsonde observation within

the scan area about the analysis grid point in question. Figures 5

through 7 give minimized analysis errors for one rawinsonde observation

within the scan area. Within these two sets of figures, the number n of

satellite observations is 1, 5, or 25. Figure 8 shows minimized analysis

errors when the number of both rawinsonde and satellite observations is 5.

Although it is believed that satellite observational errors are highly

correlated with each other along a given orbital pass, the actual magnitudes

of these correlations have not been measured. A value of 0.5 has been

assumed for the mean spatial error correlation pss in Figures 3 through 8.

(The satellite observations are assumed to be absolute, rather than

difference, values.) Figures 9 and 10 are the same as Figures 3 and 4

except that Pss is assumed to be zero. Figures 11 and 12 are the same

as Figure 3 except that pss = 0.25 in Figure 11 and p 0.75 in Figure 12.

All of the figures show that it is clearly advantageous to weight

the forecast value with the observations for those combinations of ~ and

Pfs which lie in regions I or III. For example, suppose we have five

satellite observations whose errors are uncorrelated with those of the

forecast, along with one rawinsonde observation. Assuming that the

satellite observations have errors equal in magnitude to those of the

forecast ( = 1), Figure 6 gives a normalized analysis error of .387

if the forecast is optimally weighted with the observations, whereas

the analysis error would be .420 if only the observations are optimally

weighted.
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Furthermore, if we have only a rawinsonde observation and the forecast

to consider, region III of Figure 6 indicates that a /of is .447 when the

rawinsonde is optimally weighted with the forecast. This is less than the

assumed value of 0.5 for a r/a f . Similarly, five rawinsonde observations

weighted with the forecast gives an analysis error of .218 (Figure 8) as

compared with the error of .224 which results from using the observations

only.

On the other hand, it would be disadvantageous to weight the forecast

with the observation when (, pfs ) lies in region II. Returning to the

original example of five satellite observations and one rawinsonde observa-

tion, with = 1 but with pf > 0.6, then inclusion of the forecast in

any kind of weighting scheme would result in an analysis error greater

than .420.

From the above discussion, it is apparent that the actual amount of

improvement, if any, obtained in the analysis by including the forecast

in the weighting scheme depends on the relative magnitudes of observational

and forecast errors, and on the degree of correlation between them, as

well as upon the number of observations-used.

The disadvantages of satellite observational data in an analysis

scheme are of three kinds:

(1) Current levels of satellite observational error are large

compared to rawinsonde and other conventional error levels,

and are comparable in magnitude to forecast errors.
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(2) Satellite errors are believed to be spatially correlated with

one another along an orbital pass. This lessens the informa-

tional input of satellite observations when analyzed in the

conventional way.

(3) At least for the VTPR satellite data, errors are highly

correlated with forecast errors. Hence the satellite

observations tend to be redundant if forecast values are

used in the analysis scheme,

It is apparent from all of the figures that the analysis error increases

as the correlation p increases until either the forecast or the satellite

observation must be discarded. This result is of some significance since

the current VTPR satellite data retrieval method produces data whose errors

are highly correlated with those of the forecast, In terms of the quantities

of equation (8), the correlation PFs between the satellite error and the

forecast error at the same point is variously estimated as being in the

range 0.5 to 0.8. The corresponding values of pf will be somewhat less
fs

than this; how much less depending on the mean value of PFf for the locations

of the satellite observations used in the analysis at the grid point. VTPR

satellite observations are spaced approximately 600 km apart in the oceanic

areas; this is considerably less than the dimensions of synoptic disturbances,

therefore PFf is probably not much less than unity for VTPR data.

Clearly, it is advantageous to use satellite data which is retrieved

independently of a forecast "first guess ' if the error levels are otherwise

the same. In Figure 2, where one satellite observation is weighted with
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the grid point forecast, the analysis error is .707 for uncorrelated errors

as compared to .866 for Pfs = 0.5 or .949 for Pf5 = 0.8 (assuming that 8= 1).

For those combinations of 8 and Pf which lie in region III, the

minimum analysis error is obtained by discarding the satellite observations.

Inclusion of these observations with any positive weight in the analysis

scheme would give larger analysis errors than those indicated in the figures.

Since the errors in satellite temperature measurements have been estimated

to be appreciably greater than those of the forecast errors in some cases

(for example, over land areas where the forecast error is relatively small),

and the forecast-observation error correlation has been estimated as high

as 0.8 for VTPR data, it appears that the use of VTPR data in an uninformed

way in an analysis scheme may actually result in degrading the resulting

analysis. Of course if the ratio of satellite to forecast error ~ is small

enough to lie in region II, then it is the forecast instead which should be

discarded as being the redundant information with the higher error level.

Comparison of Figures 9, 11, and 12 with Figure 3 indicates the loss

of analysis information that results when satellite observational errors

are spatially correlated and the observations are treated as absolute point

values. For example, given 8 = 1.0, pfs = 0.5, Figure 9 indicates a value

of .447 for /of when p5 5 = 0, Figure 11 gives .633 when pss = .25,

Figure 3 gives .764 when ps = .50, and Figure 12 gives .829 when ps = .75.

Similar trends are noted for other combinations of 8 and pfs* (The actual

value of PSs which is applicable to current satellite data has yet to be

determined.)
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Intracomparison of Figures 2 through 4, 5 through 7, 6 with 8, and 9

with 10 illustrates the reduction of analysis error that results from

increasing the number of observations used. In an actual analysis situation,

this corresponds to increasing the density of available observations. The

reduction of analysis error is most marked when the observational errors

are not spatially correlated; compare Figures 9 and 10 with Figures 3 and 4.

In the case of no spatial correlation, the analysis error is approximately

proportional to n If the assumption that p = 0.5 for the mean spatial

correlation of satellite errors is approximately correct, then Figure 2

compared with Figure 4 and Figure 5 compared with Figure 7 indicate that

reducing the satellite observational error by a factor of 2 would be more

profitable than increasing the density of the satellite observations by a

factor of 25!

In order to emphasize the importance of weighting observations with

care in analysis work, it is worth comparing the analysis errors that

would result from a "naive" weighting scheme such as giving equal weight

to all observations used, regardless of type, and with the forecast discarded.

In this case, equation (14) becomes

Xe +O4 A (35)

or, normalizing as before with respect to of:

(oo oA) -(36)

(m# ,,)~~~~~~~~~~~~~~~~~~~~~~~~~
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The square-root of this equation is plotted as a function of a in Figure 11

for m=0 and m=l (with a = 0.5), and for n=l, 5, and 25.

The upper part of the figure (for satellite observations only) always

gives analysis errors equal to or greater than the corresponding errors

of Figures 2, 3, and 4i Also, if the accuracy of the observations is poor,

the analysis error will exceed the forecast error even if the density of

such observations is very high. In fact, our assumed spatial correlation

p of 0.5 would make it impossible to reduce the analysis error below
SS

the forecast error, no matter how many observations are used, if the ratio

8 of satellite to forecast error is greater than two.

More interestingly, equal weighting of satellite observations and

one conventional observation, as shown in the lower part of the figure,

indicates that the resulting analysis would actually be worsened by the

inclusion of additional satellite observations if 8 is greater than about

0.5. This would be a case of a relatively good observation being "swamped"

by giving too much weight to satellite observations of relatively poorer

quality.

Finally, it should be emphasized that the error level inherent in

satellite data can probably be effectively reduced through the use of

differences rather than absolute point values. Equation (34) indicates

that the difference error a will be less than the individual observa-
Az

tional error as when the error correlation P12 between pairs of observations

is greater than 0.5. For satellite data, this is most likely to be true

when the two observations are close together and form part of the same
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orbital pass. It should be noted that the a difference errors themselves
Az

are likely to be spatially correlated along a given satellite orbital pass.

Thus results similar to those of Figures 2 through 8 would still apply,

except that the effective error level of the satellite data would be reduced.

IV. Concluding Remarks

An analytic treatment of analysis error has been developed which may

be applied to the use of satellite data in objective analysis. In

particular, both the spatial error correlation of satellite data and the

correlation between satellite and forecast errors have been included in

the derivations. Previous studies of analysis error by Gandin and others

have usually assumed random, uncorrelated errors associated with observa-

tions of uniform type.

The contribution to total analysis error resulting from inexact

interpolation has been neglected in the present treatment. A simplified

analysis "model" has been assumed which gives, in effect, the minimum

possible analysis error for any meteorological field once the observations

have been optimally weighted, The observational data are assumed to be

of two kinds, rawinsonde and satellite, and the forecast is also assumed

to be given a relative weight in the analysis. The uniform field analysis

model which is used necessarily restricts the generality of the results;

nevertheless the author believes that the effects of observational and

forecast errors on the resulting analysis error can best be indicated by

stripping away the error resulting from inexact interpolation through

use of this model.
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The results of this study may be summarized as follows:

(1) Weighting a forecast value as an additional "observation" in

the analysis scheme will frequently, but not always, reduce

the resulting analysis error.

(2) When observational error levels are comparable, satellite

data which are independent of the forecast result in lower

analysis errors than do data retrieved in such a way that

they are highly correlated with forecast values.

(3) Observations whose errors are correlated with but larger than

forecast errors may, if care is not exercised in weighting

the observations inadvertently degrade the resulting analysis.

(4) The spatial correlation of errors that presumably is character-

istic of satellite data is a handicap in conventional objective

analysis schemes. The informational input of the observations

is reduced as their spatial correlation increases. The "trade-

off" which exists between the density of observations and their

level of error is severely limited when the spatial correlation

is high.

(5) Some of the problems associated with spatial correlation of

satellite observational errors may be averted, or even used

to advantage, if an analysis method that uses differences

between adjacent satellite observations, such as gradient

analysis, is employed.
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Fig. 1. Schematic plot of the ratio of satellite-to-forecast
error, 6, as a function of the forecast-satellite
error correlation, pfs, showing division of (0, pfs)
domain into three regions (see text).
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